
Contract Research Organization
for Data Science

Centre Régional Informatique et d'Applications
 Numériques de Normandie

Acceleration of a learning algorithm in Python on a HPC cluster using mpi4py

Advestis' algorithm based on systematic exploration produces rules for various use cases, including investment recommendations. Advestis
collaborated with the CRIANN to refactor and run the code on HPC infrastructures. The first goal is to see whether a very high number of cores and a
better memory management could allow for a deeper exploration of the data compared to a local machine, where the hardware limitations prevent
the exploration of all rules, hopefully resulting in better predictions. The first goal is to compare the speed and cost of running the code on a private
cloud provider, here Google Cloud Plateform (GCP), with the public cluster "Myria", managed by the CRIANN. We found that an increase in the number
of explored rules results in a net increase in the predictive performance of the final ruleset, and that Myria is twice faster and cheaper than GCP.

Algorithmic structure

Philippe COTTE - Advestis, Benoist GASTON - CRIANN | JCAD 2022 | 10 - 12 octobre | Dijon

0 200 400 600 800
Cores

0

20000

40000

60000

80000

100000

120000

T
im

e
(s

)

data
((1−0.96) + 0.96/ x)×t(1)
r2 = 0.9856841898571718

Run time vs #Cores on Myria

This graph shows
how much the algorithm
is parallel using
Amdahl's law fitted on
the run time on Myria
from 1 to 896 cores. We
deduced a high value of
96% of parallelisation,
and see that above 100
cores (4 nodes), no significant
increase in run time is achieved.
One should keep in mind that if the thresholds were to be less harsh,
this number could greatly increase, because individual rulesets would
generate more rules and thus take more time.

The table shows the
run times and relative
prices of the algorithm
on Myria and on GCP,
with 96 cores, with
activation vectors in
RAM or on SSD.

The price of writing activation vectors to disk is a slight increase in run
time due to additional I/O. We can also see from the table than the
Myria cluster is both cheaper and faster than the GCP VM.

We aim at predicting a random variable , a financial
return, given a random vector , made, in this example,
of financial and extra-financial scores.
The learning sample is composed of pairs of observations.
and are indexed by a multi-index with two levels :
Date Stock.
The learning algorithm is rule-based. A rule of length is a
If-Then statement on features, predicting a value for when
true.
To allow better interpretability and simpler computation, is
discretized in bins. The algorithm generates all rules of
lengths 1 to and runs in time. The number of rules
thus generated from our dataset (10 years of data on 200
stocks and 1300 features) with =5 and =2 is ~ . With 1s
per rule, this is ~30 years. Two things are used to reduce this
run time: Thresholds and candidates. Thresholds, that filter
out bad rules on the fly, are chosen based on mathematical
and application-dependent criteria. But keeping only the
best candidate rules for each length is purely artificial, to
allow the code to run on a desktop computer. The
parallelisation process and run on HPC infrastructures aim at
using thresholds only (giving ~120k rules) to explore more
rules and enhance the performance. A rule can be defined by
its activation vector of length , containing 1 when the rule is
true and 0 when it is not. Doing so saves a lot of time, but
those vectors can not always all hold in memory depending
on the run configuration.

Increase in predictive performances

The graph compares the
predictive performance of the
algorithm with and without
candidates. Running without
candidates on a local computer
would require more than a
day and could result in
memory errors and crashes.
We see a net gain by exploring
more rules by using no
candidates.

Problematic

Infrastructure

Cost comparison between GCP and Myria

In the algorithm, we define a ruleset as the set of all rules of same length using the
same feature(s). This definition allows for a natural choice of strategy: one process
per ruleset. The figure shows the parallelisation of the algorithm.
One can see that there are bottlenecks: we need to gather all rules of length -1
to generate rules of length , which are all the possible combinations of rules of
length -1 and 1.
Those bottlenecks could be bypassed by starting the computation of a ruleset of
length as soon as two rulesets of length -1 are available, but that would imply a
lot of refactor. And as one can see on the graph below, the code is already 96%
parallel, so the speed increase would not be much.

pairing
rulesets

of length 1

gathering
rulesets

Reading
features

I/O operations

CPU intensive operations

Length 2
Reading

index and

Creating rules
of length 1

saving
generated

rules

Length

Supercomputer
Myria (CRIANN) Google Cloud VM

AMD EPYC Rome 7B12
96 cores@2.25GHz - 768 GB RAM

1 TB SSD

Debian GNU/Linux 11 (bullseye)

Cost evaluation:
CPU use cost/hour.core

Cost evaluation:
Biling comparison
between the beginning
and the end of a run.

Use case
The use case, which
was quite small,
could hold all the
activation vectors in
RAM, but we still ran
with activation
vector on disk too,
for the sake of
comparison.

