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Acceleration of a learning algorithm in Python on a HPC cluster using mpi4py

Advestis' algorithm based on systematic exploration produces rules for various use cases, including investment recommendations. Advestis 
collaborated with the CRIANN to refactor and run the code on HPC infrastructures. The first goal is to see whether a very high number of cores and a 
better memory management could allow for a deeper exploration of the data compared to a local machine, where the hardware limitations prevent 
the exploration of all rules, hopefully resulting in better predictions. The first goal is to compare the speed and cost of running the code on a private 
cloud provider, here Google Cloud Plateform (GCP), with the public cluster "Myria", managed by the CRIANN. We found that an increase in the number 
of explored rules results in a net increase in the predictive performance of the final ruleset, and that Myria is twice faster and cheaper than GCP.

Algorithmic structure
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Run time vs #Cores on Myria

This graph shows 
how much the algorithm
is parallel using 
Amdahl's law fitted on 
the run time on Myria
from 1 to 896 cores. We
deduced a high value of 
96% of parallelisation, 
and see that above 100
cores (4 nodes), no significant
increase in run time is achieved.
One should keep in mind that if the thresholds were to be less harsh, 
this number could greatly increase, because individual rulesets would
generate more rules and thus take more time.

The table shows the 
run times and relative 
prices of the algorithm 
on Myria and on GCP, 
with 96 cores, with 
activation vectors in 
RAM or on SSD. 

The price of writing activation vectors to disk is a slight increase in run 
time due to additional I/O. We can also see from the table than the 
Myria cluster is both cheaper and faster than the GCP VM.

We aim at predicting a random variable         , a financial
return, given a random vector            , made, in this example,
of financial and extra-financial scores. 
The learning sample is composed of    pairs of observations.    
and    are indexed by a multi-index with two levels : 
Date    Stock. 
The learning algorithm is rule-based. A rule of length    is a 
If-Then statement on    features, predicting a value for    when 
true. 
To allow better interpretability and simpler computation,    is 
discretized in     bins. The algorithm generates all rules of 
lengths 1 to   and runs in                time. The number of rules 
thus generated from our dataset (10 years of data on 200 
stocks and 1300 features) with    =5 and  =2 is ~     . With 1s 
per rule, this is ~30 years. Two things are used to reduce this 
run time: Thresholds and candidates. Thresholds, that filter 
out bad rules on the fly, are chosen based on mathematical 
and application-dependent criteria. But keeping only the    
best candidate rules for each length    is purely artificial, to 
allow the code to run on a desktop computer. The 
parallelisation process and run on HPC infrastructures aim at 
using thresholds only (giving ~120k rules) to explore more 
rules and enhance the performance. A rule can be defined by 
its activation vector of length   , containing 1 when the rule is
true and 0 when it is not. Doing so saves a lot of time, but 
those vectors can not always all hold in memory depending 
on the run configuration.

Increase in predictive performances

The graph compares the 
predictive performance of the 
algorithm with and without 
candidates. Running without 
candidates on a local computer
would require more than a 
day and could result in 
memory errors and crashes. 
We see a net gain by exploring 
more rules by using no 
candidates.

Problematic

Infrastructure

Cost comparison between GCP and Myria

In the algorithm, we define a ruleset as the set of all rules of same length using the
same feature(s). This definition allows for a natural choice of strategy: one process 
per ruleset. The figure shows the parallelisation of the algorithm. 
One can see that there are bottlenecks: we need to gather all rules of length   -1 
to generate rules of length   , which are all the possible combinations of rules of 
length   -1 and 1. 
Those bottlenecks could be bypassed by starting the computation of a ruleset of 
length    as soon as two rulesets of length   -1 are available, but that would imply a
lot of refactor. And as one can see on the graph below, the code is already 96%
parallel, so the speed increase would not be much.
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Supercomputer 
Myria (CRIANN) Google Cloud VM

AMD EPYC Rome 7B12 
96 cores@2.25GHz - 768 GB RAM

1 TB SSD

Debian GNU/Linux 11 (bullseye) 

Cost evaluation:
CPU use   cost/hour.core

Cost evaluation:
Biling comparison
between the beginning 
and the end of a run.

Use case
The use case, which
was quite small,
could hold all the 
activation vectors in
RAM, but we still ran 
with activation
vector on disk too,
for the sake of
comparison.


