# Mcl-1 conformational landscape exploration

# Jana SOPKOVA-DE OLIVEIRA SANTOS\*, Mohammed BENABDERRAHMANE and Ronan BUREAU

(1) Centre d'Etudes et de Recherche sur le Médicament de Normandie, Université de Caen Normandie, Caen, France, 14000

\* Correspondence: jana.sopkova@unicaen.fr

**Abstract:** In this study, we explored the structural dynamics of Mcl-1: an anti-apoptotic protein.



directly binding the pro-apoptotic effector proteins BAK and BAX, and proapoptotic BH3-only proteins, such as BIM.

In the case of peptide BH3-partenrs partners, four conserved hydrophobic residues at positions i, i+4, i+7 and i+11 on the contact face of the  $\alpha$  helical peptide are projected into the hydrophobic cavities of McI-1 binding groove. The receiving cavities of these four hydrophobic residues are usually named P1(i), P2(i+4), P3(i+7) and P4(i+11) respectively.



1. Propose a better understanding of the key structural elements leading Mcl-1 to adapt to its different binding partners using ensemble structures and essential dynamics;

- 2. Quantify the breathing motion at the binding interface of Mcl-1 and provide a free energy surface that better describes the likelihood of the conformational states explored by Mcl-1 in solution;
- 3. Provide a detailed understanding of how Mcl-1 allosteric inhibition works, by exposing the conformational population shift and highlighting the existence of an allosteric communication network through pocket crosstalk analysis.

| The hierarchical clustering                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Principal component analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                              |
|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Mcl-1 conformational space derived from the X-ray structures dataset (comprising 41 Mcl-1 X-ray structures) | In order to highlight the structural conformers from an ensemble poir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | differences between the<br>nt of view, we performed a PCA:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E.<br>Color Scale: Most contributing residues on PC1<br>0.30<br>0.24<br>0.18 |
| hierarchical clustering (hclust) analysis:                                                                  | the full dataset<br>(41 Mcl-1 X-ray structures)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | the reduced dataset<br>(comprising only structures with no missing residues)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.12<br>0.06<br>0.00<br>ASP241                                               |
| APO and synthetic-                                                                                          | B. C. $V = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 $ | D.<br>•2NLA,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A<br>•SVR2,A | F.                                                                           |



## Metadynamics

Metadynamics is a powerful technique for enhancing sampling in molecular dynamics simulations and reconstructing the free-energy surface as a function of few selected degrees of freedom, often referred to as collective variables (CVs).



The free-energy surface of Mcl-1's breathing motion and most populated free-energy wells. Representative structures for the three main states (A, B, C) are shown on top; colors represent the secondary structures using the STRIDE color scheme. Caatoms forming the angle [Ser255-Asp241-Thr226] are represented in VDW spheres and colored in orange.



Free-energy profile as a function of the CV angle [Ser255-Asp241-Thr226]. Free-energy wells are represented in blue circles, APO models in green squares, and peptide-bound structure in black and red triangles. The angle domain [min, max]=[47°,56°], spanned by the Mcl-1 APO NMR models [PDB ID: 2MHS] is represented in green dashed lines.



### **Collective variables selected for the Metadynamics**





To assess the reliability of our metadynamics simulation the free-energy wells should correspond to energetically favored conformations.

| 20 40 60 80 | 100 |
|-------------|-----|

Angle [SER255:CA ASP241:CA THR226:CA][deg]

Minimum A (centered around 34°) - corresponds to the closest conformation and it is not yet covered by the experimentally available data

Minimum B - corresponds to an intermediate state 'ready to bind' with an angle varying from 47° to 56°. It spans the domain covered by the only NMR APO ensemble currently available for hMcl-1 (PDB ID: 2MHS) and covers as well the synthetic-ligands conformations.

Minimum C - corresponds to a more open conformation, very similar to what the peptide-bound conformations adopt, we consider it as a transition state towards a more deep free-energy well, that might be induced and stabilized by the binding with a peptide.

UNIVERSITÉ CAEN DI CARNOT
Image: Carnot Carnot