An efficient strategy for phase field modeling of fracture in heterogeneous materials from 3D images

Dr. Xiaodong LIU Dr. Julien Réthoré

Background

 Plenty of engineering accidents and problems are due to fractures

 Fractures usually start by micro-cracks

Background

Macro-structure, i.e. **homogenized** structure, loses **local details** *e.g.* free-edge effects in laminated composite materials

Real µ-structures using CT images

Challenges and Objective

- Real 3D images of heterogeneous materials
- Complex µ-structures
- Large material properties jumps
- Huge computational cost both on time and memory

An automatic and efficient solver without any idealizations

Numerical model

Staggered phase field

- Loop on time step t
 - Compute displacement
 - Calculate strain history
 - Calculate phase field
- end loop

 $\begin{cases} 2(1-d)\mathcal{H} - \frac{g_c}{\ell_c}(d-l^2\Delta d) = 0 & \text{in } \Omega\\ d(\mathbf{x}) = 1 & \text{on } \Gamma\\ \nabla d(\mathbf{x}) \cdot \mathbf{n} = 0 & \text{on } \partial\Omega \end{cases}$

Expensive: Thousands of time steps

$$\begin{cases} d = 0 & \Psi^+ < \Psi^- \\ \nabla \cdot \boldsymbol{\sigma} = \boldsymbol{0} & \text{in } \Omega \\ \boldsymbol{u} = \boldsymbol{U}_0 & \text{on } \partial \Omega_D \\ \boldsymbol{\sigma} \cdot \boldsymbol{n} = \boldsymbol{f}_{ext} & \text{on } \partial \Omega_N \end{cases}$$

$$\mathcal{H}(\vec{x},t) = \max(\Psi^+(\epsilon(\vec{x},t))) \qquad \begin{cases} d(x) \\ \nabla d \end{cases}$$

Real image-based Simulations

Numerical methods

Finite element methods with 1 voxel / node

Automatic mesh generation

Matrix-free method

 Reduced memory requirement, *e.g.* 81 times cheaper than the global sparse stiffness matrix for a 3D mechanical problem

Preconditioned conjugate gradient (PCG) solver

- Handle large variations
- Avoid FEM lock effects, i.e. large Poisson coefficient

Geometric MultiGrid (MG) accelerator

- fine grid: eliminate high-frequency error
- coarse grid: eliminate low-frequency error

Performance analysis

Spherical inclusion for a linear elastic problem

- Nb of elements: 128³, i.e. 2 million
- Traction along Z
- *E_M* = 233.43 GPa
- $E_i = E_M / 1000$
- v=0.29

Relative residual :

$$Rr = \frac{\vec{r}^T \cdot \vec{r}}{\vec{F}_R^T \cdot \vec{F}_R}$$

Performance analysis

Multilevel PCG is 26 times cheaper

Real image-based Simulations

Robust

- huge contrast, e.g. 10¹²
- Limitations of the spherical inclusion :
 - Simple geometry
 - Mano inclusion
 - Theoretical image

Real images?

Linear elastic problem with stress singularity

- ROI taken from image of graphite cast iron
- Nb of voxels: 256³, *i.e.* 16 million

Material	E / GPa	ν	$g_c/J\cdot m^{-2}$
Iron	210	0.2	1730
Graphite nodules	21	0.3	180

Advanced technique is 2 times faster

P 14

Real image-based Simulations

Parallel performance

Applications

Crack propagation in graphite cast iron with a prescribed initial crack

- ROI + tri-linear interpolation
- Nb of voxels: 512³, *i.e.* 134 million
- To have enough voxels in interfaces

Material	E/GPa	ν	$g_c/J\cdot m^{-2}$
Iron	210	0.2	1730
Graphite nodules	21	0.3	180
Interface			36

Crack propagation

Crack propagation

Experiment

- Anchor nodule
- ② Torn nodule

Conclusions

> An efficient and automatic strategy for simulations of fractures

- > Simulations at the scale of voxel to avoid any idealizations (segmentations)
- Efficient and robust PCG based MG algorithms
- High parallel efficiency
- > A strong macro-micro interaction is demonstrated
 - Crack path is affected by material properties
- A good experiment-simulation agreement is found

Thank you!

