T. Diot, F. Cervenansky, B. Leporq, H. Ratiney, O. Beuf

AWESOMME

Application WEB pour la génération de maSSse de dONnées expertisées en IMagerie MEDicale
Context

- **Precision medicine**: through generation & exploitation of large masses of "expert data" (images and Electronic Clinical Reports)
- **Use**: anywhere in a hospital, with **identity control security & parallel use in lab**
- **Goal**: promote the development of models via a reliable & redundant **environment for expert annotations & controlled deployment of processing modules.**
Study Case: presentation

Multicenter cohorts

Patients with osteosarcomas

MRI DICOM images and segmentation files

Extraction of Radiomic to analyze response to neoadjuvant radiotherapy treatment

Up to 120 features

A. BOUHAMAMA et al. ECR 2019 10.26044/ecr2019/C-0930
J.D. Shur et al. RadioGraphics 2021 41:6, 1717-1732

October 7, 2022
Study Case: analysis

Case Ideas

Continue to visualize & work on segmentations done with others tools

Previous work: add automatic tools
- 2D segmentation tool by Altran-Capgemini
- Prognostic classification model to help interpret radiomics

Emerging Constraints

Multiple data source
- PACS (hospital official database)
- Local imports, from other centers

Save segmentation modifications
- Collaborative annotation if several experts
- Automatic generated segmentation might require manual correction

Matching platforms in hospitals and laboratory
- Restriction of use for some tools
Some latest practices

OHIF

Key points:
- Web viewer for medical images
- Measurements, segmentation
 tools available
- Connection to PACS
- Open source, editable

But no deep learning functions
and no post-processing storage

Ziegler E. et al. JCO Clinical Cancer Inform. 2020
Apr;4:336345.

XNAT

Key points:
- Tools for segmentation &
 machine learning analysis
- Use OHIF as a web viewer, but
 not as principal resource
- Open source

But web is not their first approach,
download is necessary & patient,
study PACS storage not respected

Doran SJ et al. Tomography. 2022

MONAI

Key points:
- Monai Label is a segmentation
 server-web interface app
- Provides pre-trained models
- Using OHIF for the web viewer
- Open source, editable

But OHIF in a compiled resource
cannot be modified for radiomics...

October 7, 2022
I. Context

II. The Solution: Platform AWESOMME

III. Demonstration - video

IV. Difficulties
Solution: Platform & Services

Server-web interface based on OHIF

- Additional server for authentication and launch deep learning tools
- Secure access for radiologists around the hospital
- Inclusion of tools from partners research via the external server
- Share clinical & research results through national initiative OSIRIS
Authentication mechanism

Check if the user has access rights to visualize the patient

Direct access with credentials available to see radiomic & diagnostic files

Authentication form if connection allowed return a **encrypted** token stored temporary in the viewer session

- **Research PACS** (DicomWeb server)
- **Radiologists**
- **Girder Server**
- **Web Viewer OHIF**

October 7, 2022
Tools & technologies

Girder Server

Research PACS
(DicomWeb server)

Application: C++
Communication: restApi
for dicomWeb server

Application: Python / JS
Communication: restApi

Application: JS / React
Communication: restApi

Web Viewer
OHIF
Enhanced viewer OHIF

Segmentation
- Improve use of manual tools
- Enable possibility to upload previously done segments
- Automatic segmentation tools

Feature Extraction
 Radiomic through PyRadiomics

Diagnostic
 Based on image, segmentation or radiomic

Web Viewer OHIF

Girder Server
Receive instruction and start extraction & automatic processing tools
I. Context

II. The Solution: Platform AWESOMME

III. Demonstration - video

IV. Difficulties
Demo
I. Context

II. The Solution: Platform AWESOMME

III. Demonstration - video

IV. Difficulties
Difficulties: segments

Dual Source Link
- Matching system tools should be available for both lab & hospital
- upload impossible on PACS
- Hospital PACS: not anonymized cannot share access in all cases
- OHIF does not support multisources yet

Single segments
OHIF viewer only reads 1 segment/file, do not support multiple segments yet

Traceability
- Data transfer & multiple server saving: Nomenclature needed
- Segment versions: cannot update a segment, new save obligatory. Several user expected
Difficulties: models

Leveraging research models

- Wrap algorithm in Docker
- **Different inputs**: number, type, format...
- **Failing is possible** because of the variability of the data accessible
- Inputs with different data type (int vs float)
- Diagnostic model that need radiomics vs one needing two segmentations

Delays

- Between services: data transfer
- Some models are slow to infer: **not possible in real time**
Discussion & Conclusion

Achievements

- **Complete solution** for analysis & exploitation
 2 automatic segmentation models added: Osteosarcoma & lungs
- **One public instance deployed** at CREATIS
- Secure link between clinical and research
- **On-going deployment** instance at CLB

Further Work

- **Open platform to other use**
 Extract more features, and add more models
- **Educational purposes**
 For medical students: comparison with expert annotations, computation of metrics to evaluate
Thank you for your attention!

Questions?

Address:

https://covid.creatis.insa-lyon.fr/awesomme-ohif/