

Visualisation à distance avec ParaView client/serveur sur le supercalculateur Olympe de CALMIP

Industrial Scale Bidispersed Reactive Fluidized Bed Reactor

100 tonnes of particles - D~5m - H~30m - Unstructured Mesh: 1,002,355,456 cells

2018-2022: neptune_cfd Meso- and Grands-Challenges from Tier2 to Tier0

2018-2022: NEPTUNE_CFD Meso- and Grands-Challenges from Tier2 to Tier0 2020 2021 **CALMIP/EDF: Worldwide Premiere IDRIS: 8 times bigger mesh** with 10⁹ cells unstructured mesh **8** billions cells Huge data volume to analyze and visualize **Grands-Challenges** Jean-Zay@IDRIS Meso-challenges Moving data from IDRIS to lab: Olympe@CALMIP slow, insufficient space ⇒ transfer directly to CALMIP Post-processing of heavy data requires significant RAM and **CPU** resources 25s simulated 1.7s simulated \Rightarrow limited physical analysis \Rightarrow 57 TB of visualization data

- ⇒ Simulation time: x20 slower
- Reaching post-processing limits: storage of 53 TB of data, data transfer limitations, limited toolset for visualization, ...

JCAD 2020: From HPC computations to HPC post-processing: ParaView client/server at CALMIP from home

Remote display solutions considered:

⇒ **Turbo VNC** solution as suggested by CALMIP

https://www.calmip.univ-toulouse.fr/espace-utilisateurs/doc-technique-olympe/se-connecter-olympe/visualisation-graphique-distance

🗞 1 node Volta max (4 cores max), 50GB max of RAM and variable display quality and latency

⇒ ParaView Client/server:

A solution presented by Jean Favre (CSCS) in 2017 at Toulouse (CUTIS, Groupe Calcul CNRS)

⇒ Volume rendering of a cylinder close to injectors on 8 billion cells mesh data results using 10 nodes of Olympe CALMIP

ParaView

Zv

0.0010

0.0009

0.0008

0.0006

0.0004

0.0003

0.0001 -

ParaView

ParaView client/server

"ParaView is designed to work well in client/server mode. In this way, users can have the full advantage of using a shared remote high-performance rendering cluster" <u>https://www.paraview.org/Wiki/Setting_up_a_ParaView_Server</u>

Basic principle: post-process and visualize data using ParaView server on the computing center (where were produced) and remote only display on ParaView Client on a classical workstation or laptop

Main interests:

- Better display quality and latency
- Possibility to visualize huge data using HPC resources
- Works directly with pre-compiled ParaView binaries downloaded from ParaView website for both server (*osmesa MPI for CPU*) and client
- ParaView server span over multi-nodes: many cores, RAM, GPU (ray tracing)
- Solution compatible with co-processing and visualization in situ (catalyst)

https://www.paraview.org/Wiki/File:Two-hop-tunnel.png

Full packaged and secured script to use ParaView from home (Linux) using Client/Server mode on several CALMIP compute nodes

1	_#!/bin/bash	
2	# This script should be used by users willing to run ParaView in a client/server	Prereauisites:
3	<pre># mode with the server part being hosted on Olympe (CALMIP) compute nodes.</pre>	
4	# Script developpe par Herve Neau et Maxime Pigou en 2020	⇒ ssh public-key authentication
5	L# Service CoSiNus - Institut de Mecanique des Fluides de Toulouse (IMFT)	
6		➡ to ensure data confidentiality
7		natch the library
8	<pre># STEP I - GET USER INFORMATION #</pre>	pateri tile library
9		libvtkCommonSystem.so
10	-# Ia - Get user info through interactive prompt	(by default pyserver can be accessed by
11	<pre>calmip_username="mpigou" # User login for connecting to calmip</pre>	(by default pyserver can be accessed by
12	job_nnode="10" # Number of node requested for allocation	anybody logged on supercomputer)
13	job_ntask_per_node="36"	
14	job_time="0:20:00" # Duration of the allocation	To use the full packaged script:
15	job_start_timeout="600" # How long (in sec.) to wait for the job to start	
16	<pre>local_paraview="/home/jcad2022/DemoParaviewClientServer/ParaView/bin/paraview"</pre>	\Rightarrow Only 2 fields to adapt
17		
18	# Ib - Define script tuning variables	Fully automatized
19	calmip_scname="Olympe" # How the supercomputer should be referenced	
20	calmip_hostname="olympe.calmip.univ-toulouse.fr" # Hostname of the supercomputer	
21	calmip_paraview="/tmpdir/mpigou/202209_JCAD_pvserver_demo/ParaView" # Path to ParaView on	Script used at INIFI to access
22		ParaView at CALMIP
23	<pre># Ic - Define script constants</pre>	
24	SSH_TIMEOUT=30 # Duration to wait for a SSH connexion to be dropped	
25		Contact your computer center to
26	PVSERVER_STARTUP_TIME=20 # How long to wait before the job start and the connect attempt	accoss similar sotup
27	PVCLIENT_STARTUP_TIME=20 # How long to wait between client start and the delete of its pyt	access similar setup
28		

Q

Ξ

jcad2022@demojcad2022:~/DemoParaviewClientServer\$./start_paraview_on_olympe.sh Trying to connect to Olympe using pubkey authentication... Successfully connected to olympe Job name: pvserv-38ABFF4E Submitted batch job 950638 Job submitted, job id: 950638 Waiting for job to start running. Job has started! Master node detected: olympecomp207 Waiting 20s for pvserver to be initialized. Done. Creating a tunnel to the master node: olympecomp207

Tunnel opened.

Starting ParaView with auto-connect.

Waiting for the session to end properly

Warning: Ignoring XDG_SESSION_TYPE=wayland on Gnome. Use QT_QPA_PLATFORM=wayland to run on Wayland anyway.

Warning: Permanently added 'olympecomp207' (ED25519) to the list of known hosts. Connection to olympecomp207 closed by remote host.

Removing temporary files created on Olympe.

Done!

jcad2022@demojcad2022:~/DemoParaviewClientServer\$

ParaView Client/Server on Windows

Same principle but more manual:

- Allocate Resources on computing center
- ParaView Server (pvserver) and create SSH Tunnel (Putty, mobaxterm ... using Windows)
- Connect Desktop/Laptop ParaView Client to server

Many web sites to find information:

https://hpc.llnl.gov/running-paraview-client-server-mode

https://user.cscs.ch/computing/visualisation/paraview/

https://ciarc.mines.edu/visualization-home/paraview-connection-guide/

File Edit View Sources Filters Tools Catalyst Macros I	Help	
🖻 🖗 🐯 🖉 🕐 🎮 🥙 🖉		
	T	Ī
0 0 0 0 0 0 0 0 0 0 0 0 0		
Pipeline Brown	₽×	🗆 Layo
localhost Tunnel (cs://localhost:11111)		卵風

-		f	~
Configuration	Server		
ocalhost Tunnel	cs://localhost:11111		
Add Server	Edit Server D	elete Server	
Add Server	Edit Server D	elete Server	

Now, the demo

A efficient solution...

Remote solutions such as ParaView client/server required to post-process results considering the exponential growth of simulated case size

Solution well deployed at IMFT especially thanks to COVID lockdowns

Next steps:

- ⇒ Evaluate co-processing during computation
- ⇒ Try specific compilation to optimize GPU ray tracing and produce photorealistic visualizations

- and supercomputers
- ⇒ Failure when attempting to generate 512 billion cells mesh due to these limitations

