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Plasma

Overall neutral mixture of charged particles, ions and electrons
One of the main applications is thermonuclear fusion: reaction in which atomic
nuclei are combined to form di�erent atomic nuclei and subatomic particles
(neutrons or protons). The di�erence in mass between the reactants and products
is manifested as either release or absorption of energy.
ITER project: "Fusion, the nuclear reaction that powers the Sun and the stars, is
a potential source of safe, non-carbon emitting and virtually limitless energy.
Harnessing fusion's power is the goal of ITER, which has been designed as the
key experimental step between today's fusion research machines and tomorrow's
fusion power plants" (http://www.iter.org)

Figure 1: ITER Tokamak (left). Di�erent plasmas (right).
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Vlasov-Poisson kinetic model in electrostatic regime: evolution of charged
particles in an electromagnetic �eld which is either generated by the particles or
externally applied or both.

∂fs

∂t
+ v · ∇xfs +

qs

ms
(E + v× B) · ∇vfs = 0,

∇ · E =
ρ

ε0
, E = −∇Φ,

(1)

fs : Phase-space distribution function of species s, ρ : charge density.

ρ(x, t) =
∑
s

ρs (x, t) =
∑
s

qs

∫
fs (x, v, t)dv. (2)

E,Bext ,Φ : electric �eld, external magnetic �eld and electric potential.
qs ,ms : charge and mass of a particle of species s, ε0 : vacuum permittivity.

Di�culties:
Vlasov equation posed in 6D phase space (particle positions 3d and velocities 3v) +
time.
Non linear coupling between Vlasov and Poisson: The evolution of particles depends
on the electric �eld E, computed from the charge density ρ depending on the
particle distribution.
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Standard Particle-In-Cell

Particle-In-Cell (PIC)

Most used numerical method for simulation of plasma (robust, easy to implement
and to parallelize), used for years:

C. K Birdsall, D. Fuss. Clouds-in-clouds (1969)
J.M. Dawson. Particle simulation of plasmas (1983)
L. Garrigues, et al. Application of sparse grid combination techniques to low
temperature plasmas particle-in-cell simulations (2021)
etc.

Based on Vlasov-Poisson system of equations.

Mixed discretization (set of particles and mesh/grid): Vlasov equation solved by
integrating particle trajectories and Poisson equation solved with mesh-based
methods.

Distribution of particles fs represented by a collection of numerical particles
causing a statistical noise (Es) depending on the mean nb. of particles per cell.

V(Es)
1
2 ≈

(
1

Nhdn

) 1
2

(3)

where hn = 2−n is the grid discretization, d the dimension of the problem and N
is the total number of particles.
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Standard Particle-In-Cell

Particle-In-Cell (PIC)

Steps of the method (one time iteration):
1 Accumulation of particle properties (charge density) onto the grid.
2 Resolution of Poisson equation on the grid to get the electric �eld (Finite

di�erence,FEM, FFT).
3 Interpolation of �eld properties (electric �eld) onto the particles.
4 Evolution of particles (position, velocity) from their trajectory (Leap frog).

�
�
�
�

Accumulation

� ��
�
�
�

Interpolation

� grid nodes
� particles

Figure 2: steps 1O and 3O with linear shape functions.

Error in PIC schemes is dominated by statistical noise Es ⇒ Requires
substantial number of particles. E.g for 3D3V simulation with grid discretization
2−10 in each direction and 1000 particles per cell:

1012 particles with 6 coordinates (3 for positions, 3 for velocity), 109 grid nodes for
potential, density, electric �eld.
51TB of particle data, 42GB of grid data.
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Sparse grid Particle-In-Cell

Sparse grid reconstruction

Cartesian grid is substitued by a set of component grids with coarse
discretization. Cartesian grid has O

(
2dn
)
nodes while there are O

(
nd−1

)
component grids with O(2n) nodes.

Particle properties are accumulated onto each component grid and electric �eld
is computed on each component grid. Electric �eld is reconstructed at particle
positions with combination technique [6].
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Figure 3: Component grids within the
combination and Cartesian grid.
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��
�� �

� grid nodes
� particles

Figure 4: Accumulation step on component grids.



Introduction to plasmas Particle-In-Cell methods Numerical applications

Sparse grid Particle-In-Cell

Sparse grid reconstruction

Signi�cant reduction of statistical noise because component grids have larger cells
than Cartesian grid ⇒ more particles per cell.

��
�

Cartesian grid

��
�

��
��
��

���

component grid

� particles

V(Es)
1
2 <
∼
| log hn|d−1

(
1

Nhn

) 1
2

︸ ︷︷ ︸
sparse grid reconstruction

≤
(

1

Nhdn

) 1
2

︸ ︷︷ ︸
standard

, (4)

hn = 2−n: grid discretization, d : dimension, N: number of particles.

Memory requirements are much lower because less particles for equivalent
statistical error. Computational cost of �eld solver is signi�cantly mitigated
because less total number of nodes.

A slight additional grid error (Eg ) is introduced due to the approximation with the
sparse grids [1]:

Eg ≈ | log hn|d−1h2n︸ ︷︷ ︸
sparse grid reconstruction

≥ h2n︸︷︷︸
standard

(5)
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Performance

Charge accumulation in PIC methods

Irregular memory accesses in grid array. Data must be loaded from the main
memory.
Usually bypassed with particle sorting (particles stored next to neighbors
according to the grid).

Contiguous accesses
to particle array

Non-contiguous accesses
to grid array

Figure 5: Particles are accessed in order 1-2-3 . Without sorting (middle), with sorting (right).
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Performance

Computational time of steps

PIC methods are usually memory-bounded. Too many memory accesses (particle
data) in comparison to computations ⇒ Particle advance in time most-time
consuming step because a lot of memory accesses (particle positions, velocity,
contribution of electric �eld) and few computations.

Sparse grid method has less memory accesses (less particles) and more
(independent) computations (charge accumulation and �eld resolution on each
grid) ⇒ charge accumulation is by far most time-consuming step: 95%.

Steps Standard (1) Standard (2) Sparse grid
Charge accumulation 4% 4% 95%

Poisson solver 4% 5% 0.7%
Field interpolation 33% 7% 4%
Advance particles 59% 84% 0.3%

Table 6: (1) without sorting of particles, (2)
with pre-sorting of particles.

Necessity of optimized implementation and e�cient parallelization of charge
accumulation.
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Performance

Sequential execution results

Landau Damping. Electrons are immersed in a background of ions. Perturbation
of maxwellian electron distribution considered. Electron density: standard PIC
(left) 2.09× 108 particles, sparse grid PIC (right) 2.6× 106 particles.

� �
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Performance

Sequential execution results

Bene�ts of sparse grid over standard methods deepen the more the grid is re�ned.
Demanding problems are more achievable...
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Figure 7: Memory storage, time execution of Poisson solver.

3D-3V Landau damping simulation with 2−9 grid discretization in each direction
and 1000 particles per cell on a laptop (Intel® Core� i9-10885H CPU 8 cores
@2.40 GHz with 30GB of RAM memory). Equivalent simulation in standard PIC
would require 1012 particles and 60TB of memory.
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Figure 7: Memory storage, time execution of Poisson solver and electron density (2d x-y pro�le).

3D-3V Landau damping simulation with 2−9 grid discretization in each direction
and 1000 particles per cell on a laptop (Intel® Core� i9-10885H CPU 8 cores
@2.40 GHz with 30GB of RAM memory). Equivalent simulation in standard PIC
would require 1012 particles and 60TB of memory.
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Parallelization for shared memory architectures

Parallelization for shared memory architectures

Di�culties of parallelization:
Standard PIC is not suited for shared memory parallelization (memory-bounded).
Overload of memory bandwidth because of irregular memory accesses.
Particle sorting too expensive with sparse grids (one di�erent sorting for grids).

Key elements of e�cient parallelization:
Particle population is divided into samples of particles and distributed into the
NUMA domains.
Accumulations of density onto the component grids are independent. Component
grids are distributed to the cores inside NUMA domains.
Each component grid (all nodes) �ts in the L1-cache private to each core.
Each sample of particles is divided into clusters of particles in order to achieve
perfect load balance (number of grids not necessarily equal to the number of cores
inside a NUMA domain)
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Parallelization for shared memory architectures

Parallelization for shared memory architectures

NUMA architecture: two AMD EPYC� 7713 Milan CPUs with a total of 128
cores and RAM memory of 512GB. 8 NUMA nodes. Maximum memory
bandwidth of 190.73GB/s. 32MB L3-cache, private 512 KB L2-cache and 32KB
L1-cache.

Method grid discretization particle data nb. procs Time Speedup
Standard (sorted) 2−7 75GB 1 306.4 s 1

Sparse grid 2−7 122MB 1 1.2 s 1
Sparse grid 2−7 122MB 128 0.012 s 101

Figure 8: Sparse grid Figure 9: Standard (sorted)
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Parallelization for GPU

Parallelization for GPU

Di�culties of parallelization: Standard and CPU-inherited implementation
Large amount of data to transfer between host and device (Standard)
A lot of cores sharing the same L1-cache.
Reduction operations limit the number of instruction streams.

Key elements of e�cient parallelization: GPGPU-speci�c implementation
All the data on the GPU, no memory transfers between host and device except at
initialization.
Particle population divided into clusters and distributed to Streaming
Multiprocessors (SM).
The property of a particle is accumulated onto all the component grids by the cores
of a SM in Single Instruction Multiple Thread (SIMT).
All the component grid nodes �t in the L2-cache of GPU compensating irregular
and non coalesced memory accesses genuine to PIC methods.
Atomic operation with as much as possible instruction streams in order to mask
memory latency.
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Parallelization for GPU

Parallelization for GPU

Figure 10: Con�gurations with equivalent statistical error.

Method Grid discretization Memory footprint Time (1 iter.)
Ref: Standard (CPU AMD Milan) 2−7 151GB 585 s
Sparse-PIC (CPU Intel® Sylake) 2−7 248MB 5.4 s (÷108)
Sparse-PIC (CPU AMD Milan) 2−7 248MB 2.6 s (÷225)
Sparse-PIC (GPU Tesla V100) 2−7 248MB 0.05 s (÷11, 700)

Figure 11: Standard. Figure 12: Sparse grid.
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Parallelization for GPU
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