
Helping research on distributed systems with a functional
package manager

JCAD 2022

Quentin GUILLOTEAU, Jonathan BLEUZEN, Millian POQUET,
Olivier RICHARD

Université Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG

2022-10-10

Helping research on distributed systems with a functional package manager

Outline

1 Context & Motivation

2 NixOS Compose

3 Experimental Evaluation

4 Benefits, Limitations and Lessons

5 Conclusion & Perspectives

Olivier RICHARD | UGA,LIG | 2022-10-10 2 / 29

Helping research on distributed systems with a functional package manager | Context & Motivation

Example: Mixing HPC and BigData Workloads

Simple Idea: Idle HPC resources used for BigData workload
HPC jobs have priority
Resource and Job Management Systems (HPC/RJMS): Slurm / OAR
BigData Framework: Spark/Yarn, HDFS
Evaluating costs of starting/stopping tasks (Spark/Yarn) and data
transferts (HDFS)

Olivier RICHARD | UGA,LIG | 2022-10-10 3 / 29

Helping research on distributed systems with a functional package manager | Context & Motivation

Mixing HPC and BigData Workloads: OAR + Spark/Yarn

Olivier RICHARD | UGA,LIG | 2022-10-10 4 / 29

Helping research on distributed systems with a functional package manager | Context & Motivation

Experiment’s Workflow and Some Issues

Real experiment’s workflow can be
complex and tricky to develop and tune
Reproducibility objective must be
considered at the beginning

At mid and long terms: lot of time
saved

HPC and BigData stacks:
Complex pieces of software, lot of
parameters

Input Workloads
Too few HPC and BigData traces
Lot of hypothesis

Olivier RICHARD | UGA,LIG | 2022-10-10 5 / 29

Helping research on distributed systems with a functional package manager | Context & Motivation

Kameleon:A tool to generate software appliancies (image)
How to build customized Grid’5000 image(s) ?

Kameleon
Engine

Recipe
Steps

DATA (e.g.,scripts,software
packages, software version

repositories, source tarballs,
etc.)

Software Appliance

CACHE

+

Variables

Actions
- Install Software
- Alter Configurations
- More

- Shell Commands
- Chef

Recipe (high level) how the software appliance is going to be built.
Meta-data in form of global variable and steps (mid and low-level)
Data which is used as an input of all the build steps described in
the recipe. It takes the form of prebuilt software packages, tarballs,
configuration files, control version repositories and so on.
Kameleon engine, which parses the recipe and carry out the
process of building.

Olivier RICHARD | UGA,LIG | 2022-10-10 6 / 29

Helping research on distributed systems with a functional package manager | Context & Motivation

Kameleon: recipe

A Yaml File
global:
 workdir: /tmp/kameleon
 distrib: debian
 debian_version_name: etch
 distrib_repository: http://archive.debian.org/debian-archive/debian/
 output_environment_file_system_type: ext3
 arch: i386
 network_hostname: "test"
 extra_packages: "mysql-server mysql-client mingetty "
 oar_repository: "deb http://oar-ftp.imag.fr/oar/2.2/debian/stable/ ./"
 steps:
 - bootstrap
 - system_config
 - mount_proc
 - software_install:
 - extra_packages
 - oar_2.2/oar_debian_install
 - oar_2.2/oar_system_config
 - oar_2.2/oar_config
 - autologin
 - kernel_install
 - umount_proc
 - build_appliance_kpartx:
 - create_raw_image
 - attach_kpartx_device
 - mkfs
 - mount_image
 - copy_system_tree
 - install_extlinux
 - umount_image
 - save_as_vdi

oar_config:
 - config_mysql:
 - exec_chroot: /etc/init.d/mysql start || service mysql start || true
 - exec_on_clean: chroot $$chroot bash -c "/etc/init.d/mysql stop || true"
 - mysql_db_init:
 - exec_appliance: cp $$stepdir/data/oar_mysql_db_init $$chroot/usr/lib/oar/
 - exec_chroot: oar_mysql_db_init
 - update_hostfile:
 - append_file:
 - /etc/hosts
 - |
 127.0.0.1 node1 node2
 - create_resources:
 - exec_chroot: oarnodesetting -a -h node1

Rustic approach: execute imperatively shell commands

Olivier RICHARD | UGA,LIG | 2022-10-10 7 / 29

Helping research on distributed systems with a functional package manager | Context & Motivation

Kameleon approach: issues

Pro
Overall it does the job
All Linux distributions can be supported (Debian, Ubuntu, Centos)
Comparable tool: Packer from Harsicorp

Limitations
Development of recipe is tedious and error prone
Build time can be/is huge > 10 min
During experiment’s development some tests could be done on VMs
or Containers
Not adapted for frequent changes

Olivier RICHARD | UGA,LIG | 2022-10-10 8 / 29

Helping research on distributed systems with a functional package manager | Context & Motivation

The Problem

Setting up Distributed Environments for Distributed Experiments
↪→ Difficult, Time-consuming and Iterative process

A moving target

=⇒ Does not encourage good reproducibility practices

Olivier RICHARD | UGA,LIG | 2022-10-10 9 / 29

Helping research on distributed systems with a functional package manager | Context & Motivation

The Reproducibility Problem

Different Levels of Reproducibility
1 Repetition: Run exact same experiment
2 Replication: Run experiment with different parameters
3 Variation: Run experiment with different environment

↪→ Share the experimental environment and how to build/modify it

How to share a Software Environment in HPC?
Containers? need Dockerfile to rebuild/modify. might not be
repo (e.g., apt update, curl, commit)
Modules? cluster dependent. how to modify?
Spack? share through modules...
Guix ;-)

Olivier RICHARD | UGA,LIG | 2022-10-10 10 / 29

Helping research on distributed systems with a functional package manager | Context & Motivation

Nix and NixOS

The Nix Package Manager (similar to Guix)

Functional Package Manager
Nix Lang ' json + λ

Nixpkgs (Nix expression of packages,
OS...)
Reproducible by design

The NixOS Linux Distribution

Based on Nix
Declarative approach

Complete description of the
system (kernel, services, pkgs,
config)

Olivier RICHARD | UGA,LIG | 2022-10-10 11 / 29

Helping research on distributed systems with a functional package manager | Context & Motivation

How to store the packages?

Usual approach: Merge them all

- Conflicts
- PATH=/usr/bin

/usr
├── bin
│ └── myprogram
└── lib
 ├── libc.so
 └── libmylib.so

Store approach: Keep them separated

+ Pkg variation
+ Isolated
+ Well def. PATH

+ Use RPATH

+ Read-only

/nix/store
├── y9zg6ryffgc5c9y67fcmfdkyyiivjzpj-glibc-2.27
│ └── lib
│ └── libc.so
└── nc5qbagm3wqfg2lv1gwj3r3bn88dpqr8-mypkg-0.1.0
 └── bin
 └── myprogram
 └── lib
 └── libmylib.so

Olivier RICHARD | UGA,LIG | 2022-10-10 12 / 29

Helping research on distributed systems with a functional package manager | Context & Motivation

Nix Profiles 1/2
User Profile

/home/alice/.nix-profile
/nix/var/nix/profiles/per-user/alice
├── profile -> profile-42-link
├── profile-41-link -> /nix/store/k72d...-user-env
└── profile-42-link -> /nix/store/zfhd...-user-env
/nix/store
├── zfhd...-user-env
│ └── bin
│ └── batsim
├── 0kkz...-batsim-4.1.0
│ └── bin
│ └── batsim
└── 6k6f...-simgrid-3.31
 └── lib
 └── libsimgrid.so.3.31

Olivier RICHARD | UGA,LIG | 2022-10-10 13 / 29

Helping research on distributed systems with a functional package manager | Context & Motivation

Nix Profiles 2/2

System Profile for NixOS
Define the kernel, Init script, initrd ...
Fstab (file systems table)...
Services (via Systemd)
Immutable (part) configurations in /etc

Olivier RICHARD | UGA,LIG | 2022-10-10 14 / 29

Helping research on distributed systems with a functional package manager | NixOS Compose

1 Context & Motivation

2 NixOS Compose

3 Experimental Evaluation

4 Benefits, Limitations and Lessons

5 Conclusion & Perspectives

Olivier RICHARD | UGA,LIG | 2022-10-10 14 / 29

Helping research on distributed systems with a functional package manager | NixOS Compose

NixOS Compose - Introduction

Goal
Use Nix(OS) to reduce friction for the development of

reproducible distributed environments

The Tool
Python + Nix (' 6000 l.o.c.)
an extension of Nixos-Test
One Definition
↪→ Multiple Platforms
Build and Deploy
Reproducible by design

Deployed (g5k)

image

Environment description (3 times)

Environment description (once)

Vagrant

NixOS Compose

docker-compose Kameleon

Local

docker VM

composition.nix

(1) (3)(2)

C
u
rr

e
n
t

st
a
te

N
ix

O
S
 C

o
m

p
o
se

Deployed (g5k)

image ramdisk

Local

docker VM

Olivier RICHARD | UGA,LIG | 2022-10-10 15 / 29

Helping research on distributed systems with a functional package manager | NixOS Compose

NixOS Compose - Terminology

Transposition
Capacity to deploy a uniquely defined environment on several
platforms of different natures (flavours, see later).

Role
Type of configuration associated with the mission of a node.
Example: One Server and several Clients.

Composition
Nix expression describing the NixOS configuration of every role in the
environment.

Olivier RICHARD | UGA,LIG | 2022-10-10 16 / 29

Helping research on distributed systems with a functional package manager | NixOS Compose

NixOS Compose - Composition Example: K3S
1 { pkgs , ... }:
2 let k3sToken = " df54383b5659b9280aa1e73e60ef78fc ";
3 in {
4 nodes = {
5 server = { pkgs , ... }: {
6 environment . systemPackages = with pkgs; [
7 k3s gzip
8];
9 networking . firewall . allowedTCPPorts = [
10 6443
11];
12 services .k3s = {
13 enable = true;
14 role = " server ";
15 package = pkgs.k3s;
16 extraFlags = "--agent - token ${ k3sToken }";
17 };
18 };
19 agent = { pkgs , ... }: {
20 environment . systemPackages = with pkgs; [
21 k3s gzip
22];
23 services .k3s = {
24 enable = true;
25 role = "agent ";
26 serverAddr = " https :// server :6443 ";
27 token = k3sToken ;
28 };
29 };
30 };
31 }

Role

Packages

Ports

Services

Olivier RICHARD | UGA,LIG | 2022-10-10 17 / 29

Helping research on distributed systems with a functional package manager | NixOS Compose

NixOS Compose - Flavours = Target Platform + Variant

docker - local and virtual
Generate a docker-compose configuration.

vm-ramdisk - local and virtual
In memory QEMU Virtual Machines.

g5k-ramdisk - distributed and physical
initrds deployed in memory without reboot on G5K (via kexec).

g5k-image - distributed and physical
Full system tarball images on G5K via Kadeploy.

Olivier RICHARD | UGA,LIG | 2022-10-10 18 / 29

Helping research on distributed systems with a functional package manager | NixOS Compose

NixOS Compose - Workflow

Olivier RICHARD | UGA,LIG | 2022-10-10 19 / 29

Helping research on distributed systems with a functional package manager | NixOS Compose

NixOS Compose - Technical Details (g5k-ramdisk)

Building
1 Eval. of the NixOS

configuration (+firmware)
2 Generation of the kernel,

image, initrd, store, one
system profile per role

Deploying
1 Generate deployment info

(contextualization data)
2 Run kexec on the nodes
3 Setup the info for the nodes

(hostname, ssh keys, role)

Frontend
kexec via ssh

deployment-infos

$> INITRD={path_on_NFS}/initrd \
KERNEL={path_on_NFS}/kernel \
kexec -l $KERNEL --initrd=$INITRD ...

Boot

deployment-infosStage1

Context setup
/etc/host

/root/.ssh/

...

Node's boot phases

Init PhaseKernel parameters ≤4096 bytes

Olivier RICHARD | UGA,LIG | 2022-10-10 20 / 29

Helping research on distributed systems with a functional package manager | Experimental Evaluation

1 Context & Motivation

2 NixOS Compose

3 Experimental Evaluation

4 Benefits, Limitations and Lessons

5 Conclusion & Perspectives

Olivier RICHARD | UGA,LIG | 2022-10-10 20 / 29

Helping research on distributed systems with a functional package manager | Experimental Evaluation

Experimental Evaluation

Experimental Setup

Grid’5000: dahu cluster
192 GiB of RAM

Intel Xeon Gold 6130 (2 × 16 cores)
240 GB SSD SATA Samsung

Goal of Experiments
Evaluate the (re)construction times of images vs. Kameleon
Evaluate the size of the images generated vs. Kameleon
Evaluate the deployment cycle vs. EnOSlib

↪→ Will not evaluate the deployment times as we use third party tools.

Olivier RICHARD | UGA,LIG | 2022-10-10 21 / 29

Helping research on distributed systems with a functional package manager | Experimental Evaluation

Evaluation vs. Kameleon

Experiment Goals
Eval. Images Construction and Reconstruction Times + Images Sizes

Protocol
1 Empty the nix store (no cache for Kameleon)
2 Create a base recipe with NXC and Kameleon
3 Build and measure the building time and the size of the image
4 Add the hello package to the recipe (base + hello)
5 Build the base + hello image and measure time and size

Olivier RICHARD | UGA,LIG | 2022-10-10 22 / 29

Helping research on distributed systems with a functional package manager | Experimental Evaluation

Evaluation vs. Kameleon - Results

Construction Time with NFS [s] Construction Time without NFS [s] Image size [Mib]

0 250 500 750 1000 0 250 500 750 1000 0 250 500 750

nxc−g5k−ramdisk

nxc−g5k−image

kameleon

base base + hello

Image Size, Construction and Reconstruction Time for Different Environments with and without NFS

NXC faster to build and even faster to rebuild (> 10x)
NXC produces larger images than Kameleon (modules, firmware)
NFS introduces a overhead due to many reads/writes of Nix

Olivier RICHARD | UGA,LIG | 2022-10-10 23 / 29

Helping research on distributed systems with a functional package manager | Benefits, Limitations and Lessons

1 Context & Motivation

2 NixOS Compose

3 Experimental Evaluation

4 Benefits, Limitations and Lessons

5 Conclusion & Perspectives

Olivier RICHARD | UGA,LIG | 2022-10-10 23 / 29

Helping research on distributed systems with a functional package manager | Benefits, Limitations and Lessons

Benefits, limitations, lessons

Use FPM (here Nix) to build/deploy distributed system for research
purpose

Benefits
Reproducibiliy (reconstructability) by design
Powerful framework to describe all part of distritued system
Accurate image generation (put only what you want/need)
More pleasant experiment development (time, debugging,
tranposition)
Focus on essential complexity / less accidental complexity a

Modification, variation, extension ... in more simpler way
Simple to use by new comers (students)

a“No Silver Bullet—Essence and Accident in Software Engineering” F. Brook 86

Olivier RICHARD | UGA,LIG | 2022-10-10 24 / 29

Helping research on distributed systems with a functional package manager | Benefits, Limitations and Lessons

Benefits, limitations, lessons

Limitations and issues
Radical approach Nix/NixOS (exclude other Linux distributions)
Switch declarative and functional paradigm
Advanced Nix: steep learning curve (internships are short !)
Nix ecosystem is very huge (80K packages, constant evolutions,
experimental features, lot of peripheral projects)

Olivier RICHARD | UGA,LIG | 2022-10-10 25 / 29

Helping research on distributed systems with a functional package manager | Benefits, Limitations and Lessons

Benefits, limitations, lessons

Lessons (for Nixos-Compose)
As usual : The Devil is in the details (corner cases, robustness at
scale...)
Importance of user experience/interface (UX/UI)

Workflow fluidity (CLI / features)
Simple custumization must be simple to set up (source, parameter
setting...)

Packaging non trivial tool/service is not a beginner task (need
good sysadmin skills)
We need feedback for external (early) users

Olivier RICHARD | UGA,LIG | 2022-10-10 26 / 29

Helping research on distributed systems with a functional package manager | Conclusion & Perspectives

1 Context & Motivation

2 NixOS Compose

3 Experimental Evaluation

4 Benefits, Limitations and Lessons

5 Conclusion & Perspectives

Olivier RICHARD | UGA,LIG | 2022-10-10 26 / 29

Helping research on distributed systems with a functional package manager | Conclusion & Perspectives

Conclusion & Perspectives

Reminder
Objective: Reduce the friction for dvp of reproducible distributed envs
Approach: used Nix(OS) to build NXC: a tool for transposing envs defs

Takeaway
Fast (more fluid) development cycles (containers, VM, ramdisk)
FPM (Nix/Guix) very pleasant/suitable to manage complex setup

Perspectives

Stable Release
Target others platforms
(e.g. store on NFS,
Chameleon ...)

Integration w/ EnOSlib (experiment
orchestration)

Olivier RICHARD | UGA,LIG | 2022-10-10 27 / 29

Helping research on distributed systems with a functional package manager | Conclusion & Perspectives

Questions ?

Nixos-compose: https://gitlab.inria.fr/nixos-compose/nixos-compose
Technical Paper: Cluster’22
https://hal.archives-ouvertes.fr/hal-03723771/
Tuto (wip, Oct.) https://nixos-compose.gitlabpages.inria.fr/tuto-nxc/
Supported by the European Regale Project

Olivier RICHARD | UGA,LIG | 2022-10-10 28 / 29

https://gitlab.inria.fr/nixos-compose/nixos-compose
https://hal.archives-ouvertes.fr/hal-03723771/
https://nixos-compose.gitlabpages.inria.fr/tuto-nxc/
https://regale-project.eu/

	Context & Motivation
	NixOS Compose
	Experimental Evaluation
	Benefits, Limitations and Lessons
	Conclusion & Perspectives

